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Five different methods for determining optimum fluid temperature changes during heating or cooling
thick plate are examined. The first method presented in this paper is based on the discrete form of Duh-
amel’s integral. The method can be easily applied to bodies of complex shapes and is recommended for
use, while three other methods: the Laplace transform, Burggraf analytical method, and space marching
method can be applied to only a very limited number of optimum control problems. In the fifth approach,
the optimum fluid temperature changes are approximated by a function with unknown parameters,
which are determined using the least squares method. These five techniques were used to determine
time changes of fluid temperature assuring linear increase of the slab wall temperature at the given loca-
tion inside the body. No one approach is perfect. The optimum fluid temperature changes are burdened
with a large uncertainty at the beginning of the heating process.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Large thermal stresses can occur at the inner surface of thick
walled pressure components of steam boilers during the start-up
and shut-down operations [1,2]. Measurements of strains or stres-
ses on the inner component surface, which is exposed to hot fluid
under high pressure, is extremely difficult. For this reason, the
thermal stresses at the inner surface are monitored indirectly by
measurements of time variations of the component wall tempera-
ture at the interior location or at the outer thermally insulated sur-
face, which are easily accessible. From the solution of the inverse
heat conduction problem (IHCP) the spatial temperature distribu-
tion in the whole component for any time is determined. In com-
puter monitoring systems used in power plants, the time and
space temperature and stress distribution in the pressure compo-
nents is calculated sequentially in an on-line mode in order to in-
form the operator or the control system to take measures to speed
up or slow down the start-up or shut-down process.

Determination of optimum fluid temperature changes is also
an inverse heat conduction problem. To avoid excess thermal
stresses, the temperature of the component wall should be in-
creased or decreased according to the prescribed function of
time. Another option is to adjust the fluid temperature changes
in such a way that the thermal stress at the point of stress con-
centration does not exceed the allowable values [3–6]. With the
exception of the earliest time period, the optimum rate of fluid
ll rights reserved.

: +48 12 648 5771.
and wall temperature changes is constant [3,5,6], if the physical
properties of the component material and allowable stress are
constant. This optimum rate of fluid temperature changes can
easily be determined based on the quasi-steady state theory
[5]. However, determining fluid temperature changes at the ear-
liest time of the transient process, which assure that the calcu-
lated temperature at the outer component surface is equal to
the measured values or changes according to the prescribed time
function, is a very difficult task.

Many numerical [7–9], analytical [10–13], and semi-analytical
[14] approaches have been developed for solving IHCPs. Explicit
analytical solutions are limited to simple geometries, but are very
efficient computationally and are of fundamental importance for
investigating basic properties of IHCPs.

The problem of optimum heating or cooling will be solved un-
der the assumption that physical properties of the component
material and the heat transfer coefficient are constant.

The aim of the paper is to show how difficult the IHCP is. Even
for the simple IHCP, when the temperature changes are exactly
known at the interior point, it is impossible to find a unique solu-
tion at the initial stage of the transient process. The discussion
focuses on sequential inverse methods, which are widely used in
on-line thermal stress monitoring systems [5]. Whole domain esti-
mation procedures, based on simultaneously determining all the
unknown parameters for the total time interval, are less appropri-
ate for on-line applications, since the entire time history of the
measured temperature is not known in advance. Data points are
only available over the time interval from initial time till the mo-
ment under consideration. In addition, the time of computation
should be smaller than the data sampling period.
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Nomenclature

Bi Biot number, Bi=hL/k
c specific heat capacity
d distance from the point at which the wall temperature

is prescribed to the exposed surface of the slab
F number of future time steps
F1, F2 functions defined by Eqs. (35) and (36)
Fo Fourier number, Fo=at/L2

h heat transfer coefficient
k thermal conductivity
L slab thickness
nt number of time points
_q heat flux density
r position vector
S solution of the initial-boundary problem
SL sum of the temperature difference squares
s complex variable
T temperature
t time

u influence function (temperature of the slab for unit
step-wise increase of the fluid temperature)

vT rate of fluid temperature changes
x cartesian coordinate
xT coordinate of the point at which time change of the slab

temperature is prescribed
y temperature prescribed at the location xT

Greek symbols
a thermal diffusivity
Dt time step
ln root of the characteristic equation
q density

Subscripts
f fluid
0 initial
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A new procedure for the solution of the linear IHCP based on a
numerical approximation of Duhamel’s integral in conjunction
with future time steps is presented.

This method and four other techniques: the Laplace transform
method, the modified Burggraf solution, the space marching meth-
od, and the whole domain least squares method will be used for
solving optimum heating problem when linear time temperature
variation is prescribed at the insulated rear surface of the plate.
New solutions for the fluid temperature changes for this specific
problem will be found.

Moreover, the optimum fluid temperature changes obtained
by the various methods considered in the paper will be
compared.

It must be emphasized that all the methods analyzed in the pa-
per exhibit some problems in determining initial optimum fluid
temperature changes if the wall temperature changes are pre-
scribed at the rear insulated surface. The optimum fluid tempera-
ture changes, obtained by various methods, differ significantly.
The problems encountered in the methods used in the paper will
be discussed in detail.
2. Mathematical formulation of the problem

In the case of time-dependent boundary conditions, the solution
for the linear initial-boundary problem can be significantly simpli-
fied by applying Duhamel’s integral

Sðrp; tÞ ¼ S0 þ
Z t

0
½Tf ðHÞ � T0�

ouðrP; t �HÞ
ot

dH

¼ S0 þ
Z t

0

d½Tf ðHÞ � T0�
dH

uðrP ; t �HÞdH; ð1Þ

where S(rP, t) is the solution of the initial-boundary problem with
time-dependent fluid temperature Tf(t) at the location rp and time
t. The initial value S0 is a constant and does not depend on the loca-
tion. Function u(rP, t) is the solution for the initial-boundary prob-
lem with unit step increase of the fluid temperature Tf(t) = 1, t > 0.
When the solution u(rP, t) for the unit fluid temperature change de-
scribed by the Heaviside function is known, it is easy to determine
the solution S(r, t) for the time-dependent fluid temperature Tf(t). In
optimization of heating or cooling of the construction element, the
desired system response y(t) = S(rP, t)at the inner point rP is given
and the time changes of the fluid temperature Tf(t)
Z t

0
½Tf ðHÞ � T0�

ouðrP; t �HÞ
ot

dH ¼ yðtÞ � S0 ð2Þ

is searched for. The optimization problem is reduced to the solution
of the Volterra integral equation of the first kind.

To evaluate the convolution integral in Eq. (2), the real changes
of the function f(H) = Tf(H) � T0 are replaced by a step-wise
function

f1 ¼ f ðH1=2Þ; 0 6 H 6 H1

f2 ¼ f ½H1 þ ðH2 �H1Þ=2� H1 6 H 6 H2

..

.

fM ¼ f ½HM�1 þ ðHM �HM�1Þ=2� HM�1 6 H 6 HM

ð3Þ

where M is the number of time steps.
A simple way of determining the integral in Eq. (2) is the meth-

od of rectangles. However, in case of too small integration time
steps DHi = Hi � Hi�1 unexpected instabilities can appear in the
estimated function f(t).

To assure the stability of the calculations, the time step Dt of
determining the fluid temperature Tf(t) should be larger than the
critical value Dtcr evaluated from the following condition:

Dtcr ¼
ðDFocrÞd2

a
ð4Þ

where DFocr ffi 0.5 and d = min|rP-rS| is the distance between the
point P and the body surface and a denotes the thermal diffusivity
of the body. In practice, time step Dt given by Eq. (4) is too big, mak-
ing it impossible to reconstruct the rapidly changing fluid temper-
ature Tf(t) that causes a specified output y(t) inside the body or on
its surface.

This problem is especially important at the beginning of the
optimum heating or cooling process. In this paper, so-called future
time steps are used for stabilising the solution of the inverse prob-
lem. These were introduced by Beck et al. [7] in the inverse prob-
lem analysis. The efficiency of the future time steps results from
the artificial extension of the basic time step Dt. This approach is
very useful in inverse problems because the time changes of the
fluid temperature Tf(t) received in the interior point rp are signifi-
cantly delayed and damped.

Evaluation of fi, i = 1, . . .,M will be performed step by step. First,
f1 will be evaluated, then f2, etc. In each case it is assumed that the
values of S(rP, tM�1) and fM�1 are known. The value fM remains to be



Fig. 1. Step-wise approximation for f(t) = Tf(t) � T0 and use of future temperatures
to stabilise the inverse problem of optimum heating.

Fig. 2. Location xT, at which temperature changes according to the prescribed
function T(xT, t) = T0 + mTt.
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calculated in the time interval tM�1 6 t 6 tM (Fig. 1). The time inter-
val will be artificially extended by F future time steps, with the
assumption, that in the extended interval, the tM�1 6 t 6 tMþF value
of the function f(t) remains constant and equals fM, i.e.,

fMþ1 ¼ fMþ2 ¼ � � � ¼ fMþF ¼ fM ð5Þ

The value of the fluid temperature (input signal) fM ¼ Tf ðtMÞ is
determined from Eq. (2) which can be written in the following
form:

SðrP ; tMþFÞ � yðtMþFÞ ¼ 0 ð6Þ

It is assumed that the value fM evaluated in this way is valid only in
the interval tM�1 6 t 6 tM . The convolution integral in Eq. (1) can be
calculated numerically using the method of rectangles

SðrP ; tMþFÞ ¼ S0 þ
Z tMþF

0
f ðHÞ ouðrP ; t �HÞ

oH
dH

ffi S0 þ f1DuMþF þ f2DuMþF�1 þ � � � þ fMþF u1

¼ So þ
XM�1

i¼1

fiDuMþF�i þ ðDuF þ DuF�1 þ � � � þ u1ÞfM

¼ S0 þ
XM�1

i¼1

fiDuMþF�i þ uFþ1fM ; ð7Þ

where

Du0 ¼ u1 � u0 ¼ u1; Dui ¼ uiþ1 � ui; un ¼
Xn�1

i¼0

Dui: ð8Þ

Substituting (7) into (6) yields

f1 ¼
yðtFþ1Þ � S0

uFþ1
ð9Þ

and

fM ¼
yðtMþFÞ � S0 �

PM�1
i¼1 fiDuMþF�i

uFþ1
; M ¼ 2;3; . . . ð10Þ

Eqs. (9) and (10) allow us to sequentially calculate f1, f2, f3, etc. The
time interval DtM ¼ tM � tM�1 does not have to be as large as given
by Eq. (4). If F P 1, the time step Dt can be several times smaller.
Stable solutions are already obtained at DFocr ffi 0:05. In comparison
with DFocr ffi 0:5, DFocr ffi 0:05 denotes a significant increase in the
frequency of determining fi, i = 1,2,3, . . .. Future time steps increase
the stability of the calculations, however they diminish the accuracy
of f(t) estimation.
The Laplace transform is another method that allows determin-
ing optimum fluid temperature changes. By taking the Laplace
transforms of both sides of Eq. (2) we obtain

Tf ðsÞ �
T0

s

� �
s�uðrP ; sÞ � uðrP; 0Þ½ � ¼ �yðsÞ � S0

s
ð11Þ

which can be solved for Tf ðsÞ, so that

Tf ðsÞ ¼
T0

s
þ

�yðsÞ � S0
s

s�uðrP ; sÞ � uðrP; 0Þ
; ð12Þ

where s is the complex variable. The initial value of uðrP; tÞ is u(rP,
0) = 0. In order to find the corresponding function of time Tf(t), an
inversion of the Laplace transform (12) can be performed analyti-
cally or numerically. In the numerical procedures for finding the in-
verse Laplace transforms, the time sampling interval Dt must be
sufficiently large enough to obtain stable results for Tf(t). This is
the main drawback of using the Laplace transform based method
to determine the optimum changes of Tf(t). If the point rp is situated
at a large distance from the heated surface, then the time interval
Dt should be large enough to assure the stability of the solution.
The requirement of large time steps does not allow determining
quick changes of the fluid temperature Tf(t), which occur at the ini-
tial period of optimum heating.

The third method, which can be used to determine the optimum
fluid temperature Tf(t), is the analytical solution of the inverse heat
conduction problem presented by Burggraf in [15]. The Burggraf
method is appropriate only for one-dimensional problems and
does not allow us to determine the optimum temperature Tf(t) at
the initial time period.

The same drawback has the solution obtained by the space
marching method [5,14], which is identical to that obtained by
the Burggraf method.

In the fifth method a time function representing optimum
changes of the fluid temperature is assumed and unknown param-
eters are estimated using the least squares method.
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3. Example of applications

The objective of this example is to determine the optimum tem-
perature changes Tf(t) for which the temperature of the slab in the
point xT increases linearly with time

SðrP; tÞ ¼ TðxT ; tÞ ¼ vT t; ð13Þ

where vT is the constant temperature rate (Fig. 2). The mathematical
formulation of the problem is

cq
oT
ot
¼ k

o2T
ox2 t > 0 ð14Þ

Tðx;0Þ ¼ T0; 0 6 x 6 L ð15Þ
oT
ox
jx¼0 ¼ 0; t > 0 ð16Þ

TðxT ; tÞ ¼ yðtÞ ¼ T0 þ vT � t 0 6 xT 6 L; t > 0 ð17Þ

k
oT
ox
jx¼L ¼ h½Tf ðtÞ � Tjx¼L�; t > 0 ð18Þ

The boundary condition of the third kind is given at the exposed
surface. The time varying fluid temperature Tf(t) will be determined
from the solution of the problem (14)–(18).

Calculations were carried out for the slab of thickness L = 0.1 m
with the uniform initial temperature T0 = 0 �C. The physical proper-
ties of the slab made from carbon steel are: q = 7800 kg/m3,
c = 482 J/kg K, k = 42 W/m K, where q denotes the density, c is the
specific heat capacity and k is the thermal conductivity. The heat
transfer coefficient at the exposed slab surface is h = 2000 W/
m2 K. The rear surface of the slab is thermally insulated. The tem-
perature of the rear surface (xT = 0) increases with the constant rate
vT = 0.1 K/s. The methods described above will be used for deter-
mining Tf(t).

3.1. Approximate solution based on the numerical integration of the
convolution integral

In order to calculate fi, i = 1, . . .,M by using formulas (9) and (10)
it is necessary to solve the heat conduction equation (14) with the
conditions (15), (16), and (18) for Tf = 1 �C, t > 0. The exact analyt-
ical solution of this problem is [16]:
Fig. 3. Optimum fluid temperature changes obtained by using the Burggraf solution
and space marching method.
uðx; tÞ ¼ 1�
X1
n¼1

2 sin ln

ln þ sinln cosln
cos ln

x
L

� �
exp �l2

n
at

L2

� �
; ð19Þ

where a = k/cq is thermal diffusivity, ln are the positive roots of
lntgln = Bi, and Bi = hL/k is the Biot number.

Optimum fluid temperature changes are shown in Fig. 3. Since
the point P is located on the rear, insulated surface not directly
adjacent to the fluid, the future time steps were used (F = 5). The
phenomenon of strong damping and delaying of temperature
changes Tf(t) at the body inside causes large discrepancies in the
estimated changes of Tf(t) for small time values. After the initial
allowable temperature increase over 200 �C, a rapid decrease in
temperature Tf to about 80 �C occurs, and then the temperature
rises with a constant rate of vT = 0.1 K/s.

3.2. Determination of the optimum fluid temperature changes using
the Laplace transform

If the prescribed temperature changes of the slab at location xT

are given by Eq. (13), then the Laplace transform (12) becomes

Tf ðsÞ ¼
T0

s
þ vT

s2

k
h q sinhðqLÞ þ coshðqLÞ

s2 coshðqxTÞ
; ð20Þ

where q ¼
ffiffiffiffiffiffiffiffi
s=a

p
.

Applying the inverse Laplace transforms to Eq. (20) gives

Tf ðtÞ ¼T0 þ vT t þ L2

a
1
Bi
þ 1

2
1� x2

T

L2

� �� �( )

þ 2x2
TvT

a
X1
n¼1

cos 2n�1
2 p L

xT

� �
� 1

Bi
L

xT

� �
2n�1

2 p
	 


sin 2n�1
2 p L

xT

� �
ð�1Þn�1 2n�1

2 p
	 
3

� exp �at
x2

T

2n� 1
2

p
� �2

" #
ð21Þ

where Bi = hL/k. The expression (21) represents the exact solution of
the problem (14)–(18). In practice, it is difficult to find temperature
Tf(t) for 0 < (xT/L)� 1, because the exponential term in (21) is close
to zero and Eq. (21) reduces to the quasi-steady-state solution

Tf ðtÞ ¼ T0 þ vT t þ L2

a
1
Bi
þ 1

2
1� x2

T

L2

� �� �( )
: ð22Þ

Thus, the form of Eq. (21) is not appropriate for determining opti-
mum temperature changes of the fluid in the early time stages of
the slab heating, if xT/L � 1.

3.3. Determination of the optimum fluid temperature changes by using
the Burggraf and space marching methods

Burggraf presented one of the earliest analytical solutions of the
one-dimensional inverse heat conduction problem [15]. When
xT = 0, then applying the Burggraf method to the inverse problem
(14)–(17) yields

TBðx; tÞ ¼ yðtÞ þ
X1
n¼1

1
ð2nÞ!

x2n

an

dny
dtn ¼ T0 þ vT t þ vT

x2

2a
: ð23Þ

Inserting Eq. (23) in (18) and solving for Tf(t) gives

Tf ðtÞ ¼ T0 þ vT t þ L2

a
1
Bi
þ 1

2

� �" #
: ð24Þ

Thus, the obtained result (24) is identical with the quasi-steady-
state solution (22) and is not adequate for small time values. It is
worth mentioning that the same solution (24) gives the space
marching method [5,14].



D. Taler, J. Taler / International Journal of Heat and Mass Transfer 52 (2009) 2335–2342 2339
Examining the function (23) at t = 0 shows, that the initial tem-
perature distribution is non-uniform

TBðx; 0Þ ¼ T0 þ
vT x2

2a
: ð25Þ

In order to alleviate this difficulty the general problem given by Eqs.
(14)–(17) may be separated in accordance with the superposition
method into a set of simpler problems containing: a homogenous
transient problem and quasi-steady-state problem [5]. The opti-
mum fluid temperature changes Tf(t), which were calculated using
Eq. (24) and the space marching method developed in [14], are
shown in Fig. 3. Taking into account that the temperatures at the
boundaries are: TB(0, t) = vTt and TB(L, t) = vT[t + L2/(2a)], the method
of superposition will be used to satisfy the initial condition given by
Eq. (15). The transient temperature distribution TT is the solution of
the heat conduction equation:

cq
oTT

ot
¼ k

o2TT

ox2 ; t > 0; ð26Þ

with the boundary conditions

TT jx¼0 ¼ 0; ð27Þ
TT jx¼L ¼ 0; ð28Þ

and the initial condition

TT jt¼0 ¼ �
vT x2

2a
: ð29Þ

Solving the initial-boundary value problem defined by Eqs (26)–
(29) using the method of variable separation yields the transient
temperature distribution TT(x, t) [17]. The complete solution for
temperature distributionT = TB + TT, that satisfies the initial condi-
tion (15), can be expressed as

Tðx; tÞ ¼ T0 þ vT t þ x2

2a

� �

þ vT L2

a
X1
n¼1

1
np
ð�1Þn 1� 2

n2p2

� �
þ 2

n2p2

� �

� sin np x
L

� �
exp �n2p2 at

L2

� �
: ð30Þ
Fig. 4. Transient part of temperature distribution which is needed for modifying
the Burggraf solution.
The transient part TT of the complete solution T which is needed to
improve the quasi-steady-state solution (Burggraf solution) is
shown in Fig. 4.

The heat flux _qðx; tÞ is given by

_qðx; tÞ ¼ k
oT
ox
¼ cqvT xþ cqvT L

�
X1
n¼1

ð�1Þn 1� 2
n2p2

� �
þ 2

n2p2

� �

� cos np x
L

� �
exp �n2p2 at

L2

� �
: ð31Þ

The optimum heat flux at the exposed surface is shown in Fig. 5.
The optimum fluid temperature Tf(t) is determined from Eq.

(18) as

Tf ðtÞ ¼ Tjx¼L þ
k
h

oT
ox

����
x¼L

; ð32Þ

where T(x, t) and k o T/ o x are defined by Eqs. (30) and (31), respec-
tively. The optimum temperature history Tf(t) calculated according
to Eq. (32) is compared in Fig. 6 with the approximate solution
based on the numerical integration of the convolution integral.
The deviations between the estimated and optimum temperatures
Tf(t) were found to decrease with time. The temperature distribu-
tion across the slab thickness during the optimum heating is shown
in Fig. 7.

3.4. Determination of the optimum fluid temperature changes by
solving the parametric least squares problem

Optimum changes of the fluid temperature Tf during heating of
the slab, which are shown in Fig. 6, are very difficult to carry out in
practice for the initial stage of the component heating. However,
optimum fluid temperature changes can be approximated by a
ramp function consisting of a step increase in fluid temperature
Ts followed by the temperature increase with a constant rate vT.
The solution of the direct heat conduction problem, which is de-
fined by the heat conduction equation (14), initial condition (15),
boundary conditions (16) and (18) with the fluid temperature gi-
ven by

Tf ðtÞ ¼ T0 þ Ts þ vT t; ð33Þ
Fig. 5. Heat flux at the exposed surface during optimum heating.



Fig. 6. Optimum changes of the fluid temperature Tf during heating of the slab with
the prescribed temperature of the insulated rear side: T(0, t) = 0.1t.

Fig. 7. Transient temperature distribution in a slab during optimum heating.
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is as follows

Tðx; tÞ ¼ T0 þ
Z t

0

d Tf ðhÞ � T0
� 

dt
uðx; t � hÞdh; ð34Þ

where the influence function u(x,t) is defined by Eq. (19).
Substituting Eqs. (19) and (33) into Eq. (34) and integrating

gives

Tðx; tÞ ¼ Ts þ ðT0 � TsÞF1ðx; tÞ þ vT t � vT F2ðx; tÞ; ð35Þ
where

F1ðx; tÞ ¼
X1
n¼1

2 sin ln

ln þ sin ln cosln
cos ln

x
L

� �
exp �l2

n
at

L2

� �
; ð36Þ

F2ðx; tÞ ¼
L2

a
1
Bi
þ 1� x

L

� �
� 1

2
1� x

L

� �2
�

�
X1
n¼1

2 sin ln

l2
nðln þ sin ln cos lnÞ

cos ln
x
L

� �
exp �l2

n
at

L2

� �#
ð37Þ

In the inverse problem, the unknown parameters Ts and vT are
to be adjust to satisfy approximately the following system of
equations:

yðtiÞ � TðxT ; tiÞ ffi 0; i ¼ 1; . . . ; nt: ð38Þ

where the prescribed temperature y(t) changes at the location xT are
given by Eq. (17).

The least squares method is used to estimate parameters Ts and
vT. The parameters Ts and vT are computed by minimizing the sum
of squares of the differences between values given by the model
(35) and those obtained from Eq. (17):

SL ¼
Xnt

i¼1

yðtiÞ � TðxT ; tiÞ½ �2: ð39Þ

It is necessary to find the values of Ts and vT, for which the two par-
tial derivatives are simultaneously zero:

oSL

oTs
¼ 0;

oSL

ovT
¼ 0: ð40Þ

Finding derivatives (40) gives a set of linear equations in the un-
knowns Ts and vT, which has the following solution:

Ts ¼
b1a22 � b2a12

a11a22 � a21a12
; ð41Þ

vT ¼
b2a11 � b1a21

a11a22 � a21a12
; ð42Þ

where

a11 ¼
Xnt

i¼1

½1� F1ðxT ; tiÞ�2;

a12 ¼
Xnt

i¼1

½1� F1ðxT ; tiÞ�½ti � F2ðxT ; tiÞ�; a21 ¼ a12;

a22 ¼
Xnt

i¼1

½ti � F2ðxT ; tiÞ�2;

b1 ¼ �
Xnt

i¼1

½1� F1ðxT ; tiÞ�½T0F1ðxT ; tiÞ � yi�;

b2 ¼ �
Xnt

i¼1

½ti � F2ðxT ; tiÞ�½T0F1ðxT ; tiÞ � yi�: ð43Þ

The discrepancy between the prescribed function y(t) and the
fitting function T(xT, t) can be quantified by the mean square error
(standard deviation), defined as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SL

nt �m

s
: ð44Þ

The symbol m denotes the number of parameters to be estimated. In
this example, m is 2. The values of Ts and vT are also determined by
the modified Levenberg–Marquardt method [18,19] using the sub-
routine BCLSF from the IMSL mathematical library [20].

As an example, we shall fit the solution (35) to the function
y = 0.1t. As the time points ti are equally distributed with the time
step Dt, the time points ti are given by
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ti ¼ iDt; i ¼ 1; . . . ; nt: ð45Þ

The number of time points nt is 100. Parameters Ts and vT were com-
puted for three different time steps Dt: 12 s, 30 s, and 60 s. The fol-
lowing results were obtained:

Ts = 81.2176 oC, mT = 0.07308 K/s, SL = 984.73 K2, r = 3.17 K for
Dt = 12 s,
Ts = 68.8978 oC, mT = 0.09700 K/s, SL = 706.43 K2, r = 2.68 K for
Dt = 30 s,
Ts = 65.8331 oC, mT = 0.09939 K/s, SL = 440.35 K2, r = 2.12 K for
Dt = 60 s.

The same results were obtained using the Levenberg–Marquardt
method.

The computed fluid and wall temperatures are shown in
Fig. 8(a)–(c).
Fig. 8. Fluid and slab temperature changes when optimum fluid temperature changes a
4. Conclusions

Five different methods for predicting optimum temperature
changes of the heating fluid were presented. The solutions based
on the numerical approximation of the convolution integral com-
pare favourably with other methods and can be used to determine
the optimum fluid temperature with respect to the prescribed tem-
perature or stress histories at the interior location. This method is
appropriate for bodies with complex shapes. The influence func-
tion can be computed using the finite element method.

The solution for the optimum temperature of the fluid obtained
by using the Laplace transform method is accurate, if the desired
temperature history is prescribed at locations near the heated sur-
face. The Burggraf method is inaccurate to predict optimum tem-
perature changes in the early stages of heating. It requires an
improvement of the inverse problem solution to account for the
non-uniform temperature distribution resulting from the quasi-
re approximated by a ramp function: (a) Dt = 12 s, (b) Dt = 30 s, and (c) Dt = 60 s.
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steady-state temperature distribution. The identical results to
those obtained by the Burggraf method gives the space marching
method. In the fifth method the optimum fluid temperature is
approximated by an appropriate function of time and unknown
parameters.

All the analyzed methods are not able to find an exact or accu-
rate optimum fluid temperature changes at the beginning of the
heating process.

The difficulties encountered in searching of the solution of the
transient IHCP realize us, that we can find very often only very
approximate solution.
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